A geostationary satellite is orbiting the earth at a height of $6\,R$ above the surface of earth ($R$ is the radius of earth). The time period of another satellite at a height of $2.5\,R$ from the surface of the earth is :-
$3 \sqrt 2 \,hour$
$6 \sqrt 2\, hour$
$6\, hour$
$72\, hour$
At what height above the earth's surface is the value of $'g'$ is same as in a $200\, km$ deep mine ........ $km$
Which of the following statements are true about acceleration due to gravity?
$(a)\,\,'g'$ decreases in moving away from the centre if $r > R$
$(b)\,\,'g'$ decreases in moving away from the centre if $r < R$
$(c)\,\,'g'$ is zero at the centre of earth
$(d)\,\,'g'$ decreases if earth stops rotating on its axis
Two spheres of masses $m$ and $M$ are situated in air and the gravitational force between them is $F$ . the space around the masses is now filled with a liquid of specific gravity $3$ . The gravitational force between bodies will now be
The force of gravitation is
The masses and radii of the earth and the moon are $M_1, R_1$ and $M_2, R_2$ respectively. Their centres are distance $d$ apart. The minimum speed with which particle of mass $m$ should be projected from a point midway between the two centres so as to escape to infinity is